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Abstract
Phase diagrams of ionic solutions of the ionic liquid C18mim+NTF−

2 (1-n-octadecyl-3-methyl
imidazolium bistrifluormethylsulfonylimide) in decalin, cyclohexane and methylcyclohexane
are reported and compared with that of solutions of other imidazolium ionic liquids with the
anions NTF−

2 , Cl− and BF4− in arenes, CCl4, alcohols and water. The phase diagrams are
analysed presuming Ising criticality and taking into account the asymmetry of the phase
diagrams. The resulting parameters are compared with simulation results for equal-sized
charged hard spheres in a dielectric continuum, the restricted primitive model (RPM) and the
primitive model (PM) that allows for ions of different size. In the RPM temperature scale the
critical temperatures vary almost linearly with the dielectric permittivity of the solvent. The
RPM critical temperatures of the solutions in non-polar solvents are very similar, somewhat
below the RPM value. Correlations with the boiling temperatures of the solvents and a
dependence on the length of the side chain of the imidazolium cations show that dispersion
interactions modify the phase transition, which is mainly determined by Coulomb forces.
Critical concentrations, widths of the phase diagrams and the slopes of the diameter are
different for the solutions in protic and aprotic solvents. The phase diagrams of the solutions
in alcohols and water get a lower critical solution point when represented in RPM variables.

1. Introduction

Studies of phase diagrams of ionic fluids are of fundamental
interest, because the phase transitions can be expected to be
driven or strongly influenced by the Coulomb interactions.
As a consequence of the long-range nature of the Coulomb
interactions it was hypothesized that the nature of the
critical point of the phase transition in ionic fluids may
be different [1–3] from the universal 3d Ising criticality,
which is generally expected and observed for liquid–gas and
liquid–liquid phase transitions in three dimensions driven by
short-range r−n interactions, where n > 4.97 [4, 5]. We

1 Author to whom any correspondence should be addressed.

recall that classical mean-field theories such as the van der
Waals theory or the regular solution theory and their various
generalizations predict parabolic temperature dependence for
coexistence curves, while the 3d Ising model predicts a nearly
cubic shape, in agreement with experiments [4–6]. Likewise
the temperature dependence of other properties such as the
susceptibility, the correlation length of the critical fluctuations
and specific heat observed in non-ionic fluids agree with the
properties of the 3d Ising model but not with any mean-field
theory.

Mean-field critical behaviour was discussed as a
possibility for phase transitions in ionic fluids [1–3] because
of the long-range nature of the Coulomb interactions. In
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fact, mean-field behaviour was reported for the coexistence
curve of the liquid–vapour transition of the salt NH4Cl [7],
observed at 1150 K. In view of the rather limited accuracy
of the very demanding high temperature measurements Pitzer
suggested investigating liquid–liquid phase transitions of
ionic solutions [1], because the phase transitions in ionic
solutions driven by Coulomb interactions are expected to
belong to the same universality class as the liquid–vapour
transition of pure salts according to the correspondence
principle [4]. First measurements of the coexistence curve [8]
and of the critical opalescence [9] of an ionic solution
in a solvent of low dielectric permittivity yielded indeed
mean-field criticality, apparently corroborating the hypothesis
of mean-field criticality. However, later work could not
state those reports [10] and indicated possible errors in
the measurements [11, 12]. Ensuring equilibration of
the samples Ising criticality was consistently observed in
subsequent investigations of the viscosity [13–16], of the phase
diagrams [10, 17–19] and in light scattering investigations of
the critical fluctuations [10, 12, 20–23] of the liquid–liquid
phase transition of ionic solutions. Experiments on ionic
solutions with ions differing in the charge of the ions [24]
are also consistent with Ising criticality. According to
the experiments it is now almost certain that liquid–liquid
phase transitions in ionic solutions belong to the 3d Ising
universality class. One might even reverse the argument
and expect some shortcomings in the measurements, when
Ising behaviour is not found [12]. Nevertheless, some
doubts may remain because chemical instability is a major
topic of all systems investigated experimentally until now.
The solution of N2226B2226 (triethyl-hexylammonium triethyl-
hexylborate) in biphenylether, which was proposed by Pitzer
and investigated in [8–11], changes the critical temperature
with time [11]. Furthermore different batches of the salt
yield rather different figures for the critical temperature. The
picrates used in [14, 15, 17, 25–27] are explosives. Therefore,
investigations on the criticality of ionic solutions using stable
and pure compounds are still of interest.

Comparison of critical properties with simulations is by no
means a straightforward task. Simulations of critical properties
are most demanding because they require the application of
finite size scaling (FSS) techniques. Therefore simulations
of critical properties are possible only for very simple model
fluids at present. Simulations of the critical properties of
ionic solutions are not yet available. The simple models of
ionic fluids, which have been investigated, are the restricted
primitive model (RPM) [28–30], which consists in equal-sized
charged hard spheres in a dielectric continuum, and the more
general primitive model (PM) that allows for ions differing
in size [31, 32] and also charge [33–35]. For a review on
simulations see [36]. Simulations of the RPM and the PM
yield indeed Ising critical behaviour. Identifying the dielectric
permittivity in the RPM with that of the solvent, the RPM may
be taken as a cartoon of a real ionic solution. The critical
properties of the liquid–gas phase transition of the model can
be expected to apply also for the liquid–liquid phase transition.
Thus, the experimental observation of Ising criticality for the
liquid–liquid phase transition of ionic solutions is in agreement
with the simulation results of the model systems.

Theory describing the criticality of ionic systems correctly
is not available until now. At the mean-field level, however,
theories have been developed, which compare well with the
results of earlier simulation [37–39] which did not use finite
size scaling techniques and may be regarded as ‘mean-field’
simulations. The simplest of these theories for the RPM
is the Debye–Hückel (DH) theory [40] which accounts for
electrostatic interactions among the ions. An extension of
this early theory of ionic fluids was developed by Fisher
and Levin [41, 42]; their theory predicts a coexistence
curve which agrees rather well with the results of early
simulations [37–39]. The Fisher–Levin (FL) theory goes
beyond the original DH theory for strong electrolytes by
incorporating ion pairing (following the ideas of Bjerrum) and
accounting for the interactions of free ions and ion pairs by
macroscopic electrostatics as the DH theory does for ion–ion
interactions. According to the nature of mean-field theories,
the critical temperature is overestimated and the critical density
is underestimated if compared to the results of simulations
employing finite size scaling. Nevertheless, the critical data
are located in the correct region of the temperature–density
plane by the FL theory, while the original DH theory, which
yields a rather good figure for the critical temperature of
the RPM [2, 43], underestimates the critical density by an
order of magnitude. The agreement of the FL theory and of
its generalization to charge asymmetric fluids [44] with the
simulations is better than that of theories that are based on
cluster expansions [3] and appear to be more advanced from
the statistical mechanical point of view.

The FL theory explains the fact that, in spite of the long-
range nature of the Coulomb interactions, mean-field criticality
is not observed: Ising criticality in an ionic system appears as
a consequence of the shielding of the Coulomb interactions
by the charge distribution surrounding an ion, so that the
correlations become effectively short range and Ising criticality
may result.

A very demanding problem for theory, simulation
and experiments in the field of critical phenomena is the
crossover from mean-field criticality to Ising criticality when
approaching the critical temperature. The transition from
Ising to mean-field criticality can be described by a crossover
theory [44]. The Ginzburg temperature marks the range of
applicability of a mean-field theory. Estimates of the Ginzburg
temperature of the RPM based on the Fisher–Levine theory
predict a crossover from Ising to mean-field criticality that is
further apart from the critical point than expected for non-ionic
fluids, thus excluding the possibility of mean-field behaviour
for the RPM [46–48]. Other theories yield the opposite
prediction [49, 50]. The prediction of a large Ginzburg
temperature is at variance with experimental observations [51].
Therefore, decisive experiments of critical properties in a large
temperature range and their analysis in terms of a crossover
theory [45, 52] remain a challenging topic. Such experiments
are rather difficult, because they require experiments in a
large temperature range. The necessary scattering experiments
must include regions with small scattering intensity and
require measurements of phase diagrams in regions where
non-universal specific properties become important so that

2



J. Phys.: Condens. Matter 21 (2009) 424119 W Schröer and V R Vale

the analysis of the data at large separation from the critical
temperature may become inconclusive.

A further fundamental property of the phase diagrams
is the diameter of the coexistence curves that describes the
temperature dependence of the mean of the compositions
of the two coexisting phases. For long time linearity of
this curve was assumed, which is known as the rectilinear
diameter rule of Cailletet–Mathias. It is now well established
that the rectilinear diameter rule is incorrect and non-analytic
contributions determine the behaviour, when approaching the
critical point [53]. The relative importance of the various
non-analytic terms determining the asymptotic behaviour is
difficult to assess and remains an actual topic of experimental
and theoretical investigations [54–57].

Chemical pure and stable systems are the conditions
for good experiments that clarify such settled problems as
the crossover or the asymmetry of the phase diagrams.
Unfortunately the very stable solutions of typical inorganic
salts such as NaCl are not appropriate. Liquid–liquid
phase transitions are not observed at ambient conditions
in such solutions, because crystallization occurs already at
higher temperatures than may be expected for a liquid–
liquid phase transition. For solutions of inorganic salts
homogeneous solutions or limited solubility determined by
the equilibrium between the solution and the crystalline solid
salt are commonly found. Investigations in solutions in non-
polar solvents are not possible, because the solubility of the
typical inorganic salts decreases, if water is replaced by less
polar solvents, so that the solubility of salts in hydrocarbons is
extremely low.

Only solutions of salts with low melting points can
be expected to show a liquid–liquid phase transition at
ambient conditions. However, chemical stability is an
issue for the organic salts considered in the investigations
before 2000 [9–27]. For reviews of this work see [57–60].
A new group of salts with melting points below 100 ◦C,
termed ionic liquids (IL), became recently available in good
quality. In view of their many applications ILs have become
major topics of research in chemistry, physics and chemical
engineering [61–63]. The special properties of the ILs suggest
many applications, e.g. as reaction medium, catalyst and
extraction medium. ILs are organic salts with at least one
largish non-spherical ion. Some ILs have melting points at
temperatures as low as −70 ◦C [64]. The vapour pressure
of ILs is hardly measurable [65]. Boiling temperatures
are expected near 1300 K [66], which is far above the
decomposition temperatures near 600 K [67].

The properties of the ILs are founded in the interplay of
Coulomb interactions and other interactions of the ions [68].
Thus solutions of ILs in polar, and non-polar solvents are
possible and quite a few systems with a critical point of the
liquid–liquid phase transition at ambient temperatures have
been discovered recently [69–81]. Systematic studies of the
liquid–liquid phase transition of ILs in solutions are important
for applications in separation techniques and help clarify
the relations between the molecular and the thermodynamic
properties of the solutions.

In view of the large number of new systems it is necessary
to get a comprehensive overview. A powerful tool for reducing

the data and to pin-point general aspects of the systems under
consideration is the concept of corresponding states [6]. The
theorem of corresponding states, which goes back to van der
Waals, predicts that scaling the thermodynamic variables with
their critical data leads to a universal representation of the
thermodynamic properties, e.g. of the phase diagrams. The
phase diagrams match on a master curve, when represented
in terms of variables that are scaled in such a manner. It
was proven by statistical thermodynamics that the theorem of
corresponding states rigorously applies if the intermolecular
potential is of the form u0ϕ(σ/r), where u0 and σ are
parameters of the energy and of the separation [82]. The
Lennard-Jones potential uLJ = u0((σ/r)12 − (σ/r)6) is an
example of such a potential. A reduced temperature T ∗ =
kT /u0 and a reduced density ρ∗ = ρσ 3 may be defined,
allowing for a presentation of all thermodynamic properties in
terms of the reduced variables. For a given function ϕ(σ/r)

the reduced critical data T ∗
c , ρ∗

c and the phase diagrams in the
reduced variables are independent of the particular values of
u0 and σ . Guggenheim’s analysis of the phase diagrams of the
liquid–gas phase transition of the noble gases [6] demonstrated
not only the validity of the corresponding states approach for
this group of compounds but showed also that the coexistence
curves are in accordance with the Ising model but not with any
mean-field theory.

Although the theorem of corresponding states can hardly
apply rigorously in real systems, approximate validity is
found quite often even in ionic solutions [69–71, 83, 84].
Otherwise, as emphasized by Guggenheim, the deviations
from the corresponding state behaviour may give valuable
hints on specific properties of the particular systems [6].
Thus, corresponding state analysis enables us to select certain
groups in which the corresponding state principle is satisfied
as was demonstrated, for example, by analysing surface
tensions [85, 86] and phase diagrams [83, 84].

Considering ionic solutions, the RPM may be used as a
reference system for the corresponding states analysis of the
phase diagrams of ionic systems. Certainly, the RPM can only
be a crude cartoon of a real ionic solution. The phase transition
of this model is a liquid–gas transition. The RPM does not
take into account the chemical structures of the ions of the ILs,
the molecular correlations between the ions and the solvent
molecules. Therefore, it is most remarkable that, besides the
universal critical exponents, the critical properties of the RPM
are in general agreement with those of the liquid–liquid phase
transitions found in ionic solutions [69–71, 83, 84].

With an estimate of the smallest separation σ of the charge
centres of the oppositely charged ions and the knowledge of the
dielectric permittivity ε of the solvent the experimental data
may be expressed in terms of the RPM variables, the reduced
temperature T ∗ and the reduced density ρ∗:

T ∗ = kT εσ

q2
and ρ∗ = ρσ 3, (1)

where q is the charge of the ions and ρ the number density
of all ions. Estimates of the critical data based on the critical
data of the RPM have been a useful tool when searching
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liquid–liquid phase transitions of ionic solutions [25, 58–60]
at ambient conditions.

Until now, most work on phase transitions in ionic solu-
tions concerns solutions in alcohols [12, 14–20, 25–27, 72–76].
Reports on liquid–liquid demixing in other solvents, e.g. in
alkanes [70], arenes [23, 71, 77–79, 84, 87], alkyl-
halides [21, 80, 81] or other solvents as ethers [8–11, 24] are
rare. The list of the work on liquid–liquid phase transitions is
not exhaustive. For solutions in non-polar solvents the critical
temperatures T ∗

c in RPM variables have been found to be in the
region but below the RPM value [70, 71] obtained in simula-
tions [28–31]. For polar solvents, such as alcohols and water, it
was observed that the reduced critical temperatures are larger
than predicted by the RPM. An almost linear variation of T ∗

c
with the dielectric permittivity of the solvent [69, 83, 84] was
observed, indicating a continuous change of the dominating
forces driving the phase transitions from Coulomb interactions
in non-polar solvents to a mechanism based on solvophobic in-
teractions in solvents of high dielectric permittivity. It was also
observed that phase diagrams of the solutions in protic solvents
such as alcohols and water get a lower critical solution point
when the analysis is carried out in terms of the RPM variables,
taking into account the temperature dependence of the dielec-
tric permittivity of the solvent. This observation is taken as an
indication of the importance of the contribution of hydropho-
bic interactions to the phase transition [71, 84]. Conversely, the
phase diagram of solutions in aprotic polar solvents that have
a lower critical solution point such as, for example, solutions
in SO2 [88] or HCCl3 [21] get an upper critical solution point
in the phase diagrams represented in RPM variables so that
the phase transition can be expected to be driven by Coulomb
forces [21, 71] in spite of the lower critical solution point in the
normal temperature scale.

In this work we continue our systematic study of the
phase diagrams of ionic solutions aiming to identify general
properties of the phase diagrams and searching for solutions
appropriate for precise measurements of critical properties,
crossover and asymmetry of the coexistence curves. We
compare the experimental data with the simulation results
for the primitive model, which we analyse in the same
way as the experimental data. We report measurements of
solutions of 1-n-octadecyl-3-methyl imidazolium (C18mim+)

bistrifluormethylsulfonylimide (NTF2) in tetralin, cyclohexane
and methylcyclohexane, analyse the literature data of solutions
of other CnmimNTF2 ILs in arenes and alcohols and compare
with results of solutions of CnmimCl in arenes and CCl4
as well as of CnmimBF4 in alcohols, which were discussed
before [71, 84]. The analysis of the behaviour of solutions
of ionic liquids with the NTF−

2 anion provides a particular
challenge for the analysis because of the properties of the
anion. While the Cl− ion and the BF−

4 anion may reasonably
well be approximated by a sphere so that the centre of charge
is identical with the centre of mass, the NTF−

2 anion is by
no means spherical. The NTF−

2 anion is flexible and allows
for different conformers [89, 90]. The nitrogen atom in the
anion is not necessary identical with the centre of mass and
the centre of charges. The negative charges are expected to be
distributed at the oxygen atoms. Consequently, for CnmimCl

and CnmimBF4 reasonable estimates for the distance of the
centres of charges at contact (taken as the effective hard-
sphere diameter of the ions) were possible on the basis of van
der Waals radii. Because this is not possible for the NTF−

2
anion we employ simulation results for the radial distribution
function [91] for estimating the effective hard-sphere diameter
and reanalyse the data concerning solutions of CnmimCl and
CnmimBF4, using radial distribution functions given in the
same work.

2. Methodology

2.1. Data analysis of phase diagrams

Presuming Ising criticality, the temperature dependence of
a concentration variable X at coexistence near the critical
temperature Tc can be represented by power series in terms
of the reduced temperature τ = |T − Tc|/Tc [4, 5, 53], the
so-called Wegner expansion:

X±
Xc

= Xm

Xc
± Bτβ(1 + B1τ

� + B2τ
2� + · · ·), (2)

where

Xm

Xc
= 1 + Aτ + Cτ 2β + Dτ 1−α(1 + D1τ

� + · · ·). (3)

By X we denote a composition variable. The plus refers to
the region X > Xm and vice versa; Xm is the so-called
diameter, defined by the average Xm = (X+ + X−)/2 of
the compositions X+ and X− of the coexisting phases. For
the Ising model the exponents assume the universal values
β = 0.325, α = 0.11 and � = 0.51, where β is the
leading exponent for the phase diagram, α is the exponent of
the heat capacity and � is the crossover exponent, describing
the crossover from Ising to classical mean-field behaviour. In
mean-field theories β = 1/2 and α = 0, so that the rectilinear
diameter rule of Cailletet–Mathias, which assumes a linear
temperature dependence of the diameter, applies in mean-
field theory. By definition, there is no crossover exponent
� in mean-field models. While the exponents are universal,
the amplitudes are specific for the system but must satisfy
certain sum rules. The corrections to scaling that are given
in equations (2) and (3) suffice in the region τ < 10−2 [4].
When analysing data in a wider temperature region a crossover
theory [45] should be applied. However, at large distances from
the critical point other specific contributions become important
so that universality is lost.

The non-analytic temperature dependence of the diameter
was not noticed for a long time. Now the nonlinearity of the
diameter is accepted although its temperature dependence is
still under discussion [53–57]. For some time it was agreed
that the term with the exponent 1 − α is the leading term
near the critical point, while the 2β term was regarded as the
consequence of a non-appropriate choice of the concentration
variable [92]. Recent theoretical work, termed complete
scaling, that assumes three scaling fields suggests the 2β term
as the leading part [54–57]. Another theory that assumes only
two scaling fields but assumes a nonlinear relation between
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the scaling fields and the physical fields [93] leads to the
same conclusion. The 2β term becomes small for liquid–
liquid phase transitions far apart from a liquid–gas critical
point if the number density is chosen as the variable [45].
In many cases partial cancellation of the 2β and the 1 − α

terms may cause an apparent linear temperature dependence of
the diameter [55]. That’s why deviations from linearity are
often small. Therefore, it is difficult to determine uniquely
the various coefficients of equation (3) by numerical analysis
of experimental data. With the exception of [94] simulations
of the RPM have not reached the accuracy to show the non-
analytical contributions to the diameter of the phase diagram.

The analysis of phase diagrams using equations (2) and (3)
or the crossover theories requires precise knowledge of the data
of the critical point and measurements with mK accuracy. Most
phase diagrams reported in the literature are obtained by the
so-called visual method, where the temperature of the cloud
point for samples of different compositions is measured. This
method, which is also used in this work, is mostly not accurate
enough to allow for a data analysis by equations (2) and (3) but
suffices to estimate the locus of the critical point and show the
gross features of the shape of the phase diagrams. Therefore, a
simpler approach for the data evaluation may suffice here.

In engineering thermodynamics analytical Taylor expan-
sions are commonly used for describing excess functions and
coexistence curves. Using analytical functions, however, im-
plies mean-field exponents for the critical properties, ignor-
ing the fundamental fact that liquid–liquid phase transitions
belong to the Ising universality class. Therefore, we apply a
method [83], which is simpler than equations (2) and (3) but
takes care of the non-classical nature of the phase diagrams.
The simplified scaling laws applied in the analysis are

X± − Xm = ±b(Tc − T )1/3 (4)

where
Xm = Xc + a(Tc − T ). (5)

By using the small letters a and b in equations (4) and (5) we
indicate that we use unscaled variables. Equations (4) and (5)
lead to a cubic equation for T , which can be solved exactly.
However, the resulting solutions are too messy to be applied in
a fitting procedure. In many cases the slope of the diameter is
not very large and an expansion of |X − Xm |3 in first order of a
may suffice. The resulting function T (X), which will be used
as a fitting function, is

T = Tc − |X − Xc|3
b3 ± 3a(X − Xc)2

. (6)

The positive and negative signs correspond to the range X <

Xc and X > Xc, respectively. For a lower critical solution
point the sign in front of the fraction becomes positive.
Alternatively, the signs of b and a may be changed for
describing phase diagrams with a lower solution point. The
parameters of the fit are the critical data Tc and Xc, the width
b of the coexistence curve and the slope a of the diameter.
By such a fit the non-classical shape of the phase diagrams
is taken into account in a reasonable approximation. The
approximation β = 1/3, which was also used by Guggenheim,

is near the Ising value β = 0.325 and suffices for our purpose.
Note, straightforward fits by an analytic power series not only
imply classical exponents, but often also lead to erroneous
descriptions, e.g. by showing spurious maxima.

As an alternative to the assumption of the validity of the
rectilinear diameter rule we may assume that only one of the
terms in equation (3) suffices. As the limiting case we take
only the 2β term so that equation (5) is replaced by

Xm = Xc + c(Tc − T )2/3. (7)

Instead of equation (6) we get

T = Tc − |X − Xc|3
b3 ± 3cb|X − Xc| . (8)

Equations (6) or (8) may also be applied for fitting
corresponding states diagrams in terms of the reduced variables
�X = (X − Xc)/Xc and τ = |T − Tc|/Tc. The fitted
parameters are then termed A and B , or C and B because they
correspond to the coefficients in equations (2) and (3):

τ = |�X |3
B3 ± 3A�X2

(9)

τ = |�X |3
B3 ± 3BC|�X | . (10)

In mean-field theory, the equations corresponding to equa-
tions (4) and (5) lead to a quadratic equation with a simple ex-
act solution. The equations analogous to equations (6) and (9)
become

T = Tc − (X − Xc)
2

b2 + 2a(X − Xc)
(11)

τ = �X2

B2 + 2A�X
. (12)

From a rigorous theoretical point of view the physical variables
temperature and composition must be replaced by some linear
combination in order to achieve a transformation to the
variables of the Ising model [54–57]. This is outside the scope
of this work. From the experimental point of view various
choices for the composition variable X can be thought of,
e.g. the mole fraction x , the mass fraction w, the volume
fraction ϕ or the number densities ρi of the components.
Although much used in the technical literature, the mass
fraction is not appropriate, because the masses are irrelevant
for the thermodynamics of fluids. We report the data in terms
of the mole fraction. We also analyse the data in terms of the
reduced ion number density of the salt, the variable used in
theories and simulations of the RPM. The application of the
number density as variable, however, requires a knowledge
of the density as a function of temperature and concentration.
In a reasonable approximation, the densities can be estimated
by assuming additive molar volumes, thus ignoring the excess
volumes. In this approximation the reduced ion number density
ρ∗, which is the corresponding state variable of the RPM, is
estimated from the mole fraction xIL of the IL and the molar
volumes VIL and VS of the IL and of the solvent, respectively:

ρ∗ = 2xILσ 3 NA

xILVIL + (1 − xIL)VS
. (13)

5
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Figure 1. Phase diagrams of the primitive model [32] with equal
charged hard spheres for axis ratios
σ+/σ− = {1(��), 2(�), 3( ), 4.26(�), 5.67(�)} fitted with
equation (6). The figure also shows the data (�) of the early
simulation [37] of the RPM that did not use a finite size scaling
technique fitted with equation (11), presuming a mean-field
criticality (dashed line) together with the phase diagram predicted by
the Fisher–Levine theory.

NA is Avogadro’s number. The diameter σ of the ions is
identical with the charge separation in the hard-sphere models
RPM and PM. In the analysis of the experimental phase
diagrams we take here the maximum of the pair correlation
function for the mass centre of the imidazolium ring of the
cation and the centre of mass of the anion [91] as an estimate
of σ . With this choice we adapt the RPM variables, given in
equations (1) and (13), for the analysis of real ionic solutions.
The volume fraction ϕ would be obtained by replacing 2σ 3 NA

in the nominator of equation (13) by the molar volume VIL of
the salt.

2.2. Phase diagrams of model systems

A complete theory which treats the non-classical singularities
at the critical point of ionic fluids adequately and which
predicts the coefficients in equations (2) and (3) correctly
is not available. This is true even for the simplest model
of an ionic fluid, the RPM. Thus we can only compare
experimental results with simulation results of the model
of equal-sized charged hard spheres, the RPM, and of its
generalization, the PM, concerning ions of differing sizes. In
figure 1 we see the phase diagrams reported for the primitive
model [32] with equal charged hard spheres for axis ratios
λ = σ + /σ− = {1(��), 2(�), 3( ), 4.26(�), 5.67(�)}.
The temperature scale and the density scale are that of the
RPM defined in equation (1), where the diameter σ is the
mean value of the diameters σ+ and σ− of the anion and the
cation, respectively. The curves are the results of the fits using
equation (6). The results of the numerical analysis of the phase
diagrams are given in table 1. The relative uncertainties of
the parameters of the fit are �T ∗

c = 0.15%, �ρ∗
c = 0.8%,

�b = 0.6% and �a = 2.7%.
From figure 1 it can be seen that both the critical

temperature and the critical density are shifted towards smaller
values with increasing asymmetry of the ion size. The
figure shows also the simulation results (�) of the early
simulation [37] of the RPM that did not use a finite size

Table 1. Parameters of the phase diagrams of charged hard spheres
and the Lennard-Jones fluid. The critical temperatures T ∗

c and the
critical densities ρ∗

c are given in the reduced variables of the models.
The coefficients of the width b and the slope a of the diameter are
related to those scales, while the coefficients B and A refer to the
corresponding state representation.

System λ T ∗
c ρ∗

c b a B A Reference

LJ 1.2327 0.3366 0.518 0.22 1.65 0.79 [30]
RPM92a 1 0.0566 0.0447 0.940 8.97 5.01 11.36 [37]
RPMFLa 1 0.0572 0.0273 0.540 7.77 4.73 16.30 [2]
RPM 1 0.0500 0.0836 0.628 8.23 2.77 4.92 [31]
PM 2 0.0485 0.0787 0.581 7.29 2.69 4.49 [31]
PM 3 0.0452 0.0666 0.512 7.10 2.74 4.81 [31]
PM 4.26 0.0404 0.0591 0.453 6.24 2.63 4.27 [31]
PM 5.57 0.0366 0.0571 0.433 5.22 2.52 3.35 [31]
RPM 1 0.0499 0.0809 0.609 7.59 2.77 4.69 [32]
PM 1.33 0.0500 0.0840 0.636 7.03 2.79 4.19 [32]
PM 2 0.0490 0.0700 0.510 7.00 2.60 5.00 [32]
PM 4 0.0436 0.0512 0.391 5.48 2.69 4.66 [32]

a Fits use equations (9) and (10), which presume mean-field
behaviour.

scaling technique fitted with equation (11) presuming mean-
field criticality (dashed line) together with the phase diagram
predicted by the FL theory. The phase diagram obtained from
the FL theory was also fitted using equation (11) but restricted
to the density range below 0.1. The early simulation, which we
may term mean-field simulation, yields a critical point that is
at a 10% higher temperature and at a density that is smaller
by almost 50% if compared to the simulation using finite
size scaling. The FL theory yields a slightly higher critical
temperature and a density which is smaller by almost a factor
of two.

The trends of the locus of the critical points are displayed
in figures 2 showing the critical temperatures (a) and the
critical densities (b) obtained from the analysis of the
simulation data of [32] (�) and [33] (��) as a function of
the size ratio σ+/σ− of the ions. It appears that the critical
temperature is changed little if the axis ratio is between one and
two and decreases almost linearly for larger axis ratios. The
critical temperature obtained from the mean-field simulation
(�) [37] is not to distinguish from that of the FL theory [2]
in this scale. The critical densities decrease with the axis ratio
in a bell-shaped manner. However, this variation is small if
compared to the difference between the density obtained by
simulations of the RPM (σ+/σ− = 1) that apply the FSS
techniques and that obtained from the mean-field simulation
(�) and the FL theory ( ).

It is difficult to judge the change of the parameters
describing the shape of the phase diagrams from the diagrams
in figure 1. Therefore we show in figures 3(a) and (b) the
parameters of the width b∗ and of the slope a∗ of the diameter
of the phase diagrams as a function of the relative size of the
ions, obtained from the fits using equation (6). By the star we
indicate that the reduced variables of the RPM are used. Both
the width and the slope of the diameter of the phase diagrams
decrease with the asymmetry of the phase diagrams. Again we
have included the results of the fits to the mean-field simulation
of the RPM (�) and the FL theory ( ). From the data of
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Figure 2. Critical temperatures (a) and critical densities (b) of the primitive model obtained from the analysis of the simulation data of [32]
(�) and [33] (��) as a function of the size ratio λ = σ+/σ− of the ions. The point labelled (�) refers to the early simulation that did not use
finite size scaling, while the point labelled ( ) gives the result of the Fisher–Levin theory.

b

Figure 3. Parameters of (a) the width b∗ and (b) the slope a∗ of the primitive model of the diameter of the phase diagrams as a function of the
relative size of the ions. The symbols have the same meaning as in figure 2.

the mean-field simulation we get values larger than that of the
simulations using finite size scaling techniques. Fortuitously
the parameters obtained by fitting the phase diagram predicted
by the FL theory agree remarkable well with those obtained
from the simulations using finite size scaling.

As outlined in section 1, corresponding state behaviour
can be expected if the intermolecular potential is of the same
form, which is not the case for different axis ratios considered
in the primitive model. Nevertheless, it is of interest to see
if the trends of the shape parameters remain, when using
the corresponding state variables �ρ∗ = |ρ∗ − ρ∗

c |/ρ∗
c and

τ ∗ = |T ∗ − T ∗
c |/T ∗

c . Note that the corresponding state
representation is independent of the figures of σ and ε because
these parameters are constant and cancel in the corresponding
state variables. In figure 4 we compare the corresponding
state phase diagrams of the RPM, of the PM with that of the
Lennard-Jones fluid (�) [33] and that of the rare gases (♦)

taken from Guggenheim’s paper [6]. We include the fits to
the mean-field simulation (dashed line) of the RPM and the FL
theory (full line).

The symbols have the same meaning as in figure 1. The
phase diagrams of the Lennard-Jones fluid and of the noble
gases are very similar: they are quite symmetric and much
narrower if compared to the ionic fluids. The curve is the
fit to the simulation results of the Lennard-Jones fluid. The
phase diagram of the RPM has the most asymmetric shape
among the ionic fluids considered in the simulations. The
drawn curve is the fit to the RPM. Note that the simulations

Figure 4. Corresponding state phase diagrams of the PM. The
symbols denote the same systems as in figure 1. The shown fit
concerns the RPM. The figure includes the data of the rare gases
(♦) [6] and the simulation data of the Lennard-Jones fluid (�) [33]
with the fit and also the fits to the early simulation of the RPM
(dashed line) and the FL theory (full line) which yield more
asymmetric phase diagrams.

approach the critical temperature only until τ ∼= 0.03 which
corresponds to a temperature separation of about 10 K from
the critical temperature in the investigations of ionic solutions
at ambient temperatures. The asymmetry obtained in the
mean-field simulation of the RPM is larger than that of FSS
simulations. The FL theory yields an even larger asymmetry.

These observations are more clearly demonstrated in
figures 5(a) and (b) showing the width and the diameter slope

7
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a b

Figure 5. Parameters of (a) the width B∗ and (b) the slope A∗ of the diameter of the corresponding state phase diagrams as a function of the
relative size of the ions. The symbols refer to the same systems as in figure 2.

of the corresponding state phase diagrams, respectively. The
width of corresponding state phase diagrams of the PM is
almost independent from the axis ratio of the ions. The
decrease with the size of the axis ratio is almost not noticeable
if compared to the larger width obtained from the mean-field
simulation and the FL theory. A similar conclusion applies
to the asymmetry parameter A∗. Thus, the trends of the
parameters of the corresponding state phase diagrams of the
primitive model are the same as that in the RPM variables
shown in figure 3. However, the relative changes are much
smaller, due to the scaling by the critical data. Remarkably the
difference between the parameters obtained from the classical
simulations and the FL theory for the RPM to the FSS
simulations is enhanced when corresponding state variables are
used.

So far we have discussed the results of the fits to the phase
diagram yielded by the analytical FL theory. The advantage of
analytical theories, however, to provide a complete solution for
the thermodynamic space, is not exploited. Close to the critical
point the explicit expressions for the free energy density can be
written as a power series in terms of the corresponding state
variables. The coefficients in this expansion, known as the
Landau expansion, although already given by van der Waals,
can be calculated from the theory. The Landau expansion
allows calculating asymptotic expressions for the width B∗ and
the slope A∗ of the diameter of the coexistence curve [71, 95].
The exact asymptotic results for the quantities B∗ and A∗ in
the FL theory are 3.87 and 11.6, which is somewhat below the
figures obtained by fitting the data of the phase diagram in the
temperature range τ ∗ < 0.1 which includes already some non-
asymptotic contributions.

2.3. Experimental details

The ionic liquid 1-methyl-3-octadecylimidazolium-bis
(trifluormethylsulfonyl)-imid (C18mimNTF2) was purchased
from Iolitec (Denzlingen, Germany). The purity certified by
the producer was >98%. The solvents were chosen of high-
est quality available cyclohexane (Fluka >99.5%), methyl-
cyclohexane (Sigma-Aldrich >99%) and cis-tetralin (Fluka
>98.%). Standard NMR and MS analysis did not show im-
purities in the salt and the solvents. The salt was filled into
the sample cell inside a glove box filled with argon and dried
by keeping it at 80 ◦C for 24 h under the oil pump vacuum of

5 × 10−5 bar. The solvents were dried by adding P2O5. The
‘pump and freeze’ technique at the vacuum line was used to re-
move the gases and volatile compounds from the solvents and
from the salt. The dried solvents were condensed via a vacuum
line into the sample cell that was cooled with liquid nitrogen. A
Teflon tap (Normag) attached to the sample cell enabled con-
necting and removing the sample cell from the vacuum line,
thus allowing control of the weight of the sample during the
drying process, and also when changing the solvent content.
The concentrations were determined by weight with an accu-
racy of 10−4 g. In this manner a set of concentrations was
prepared by adding or removing solvent from the sample by
distillation on the vacuum line with identical sample of the IL.
Using this method the amount of the ionic liquid is constant;
uncontrollable traces of impurities are avoided that can cause
deformations of the separation curves, when different samples
are investigated. Mixtures with the mass fractions ranging from
0.05 to 0.15 were prepared in this way. The cloud points were
determined visually by repeated cooling of the homogeneous
mixture in a thermostat with glass windows (Lauda K20KP)
filled with water so that the accessible temperature range was
16–90 ◦C. Clearly, the accuracy of the visual method is limited
by the subjectivity of the experimentalist. The cloud points
have been measured in a temperature region of 1 K below the
critical point for 10–16 different concentrations. The tempera-
ture was controlled with an accuracy of 0.01 ◦C using a Quartz
thermometer (Hereaus QUAT200).

3. Results and discussion

3.1. Phase diagrams of solutions C18mimNTF2 in non-polar
solvents

In figure 6 we show the phase diagrams for the solutions of
1-methyl-3-octadecylimidazolium-bis(trifluormethylsulfonyl) -

imid (C18mimNTF2) in decalin (cis-decahydronaphtalene), cy-
clohexane and methylcyclohexane (figures 6(a)–(c)) as a func-
tion of the mole fraction x of the salt. The data of the phase
diagrams are given in table 2. The last row of the table gives the
data of the critical point determined by the equal volume cri-
terion, which defines the critical concentration as that yielding
equal volume for the phases just below the critical temperature.
The measurements were carried out strictly preventing contact
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a b

c

Figure 6. Phase diagrams of C18mimNTF2 (1-methyl-3-octadecylimidazolium-bis(trifluormethylsulfonyl)imid) in (a) methylcyclohexane,
(b) cyclohexane and (c) decalin with the mole fraction as variable of the composition.

Table 2. Phase diagrams of solutions of C18mimNTF2 in the cyclic
hydrocarbons cyclohexane, methylcyclohexane and decalin. The last
row gives the critical data as determined by the equal volume
criterion.

C6H12 C7H14 C10H18

x T (K) x T (K) x T (K)

0.0246 304.75 0.0115 301.48 0.0102 329.66
0.0234 304.87 0.0126 301.79 0.0118 329.94
0.0201 305.09 0.0143 301.87 0.0144 330.28
0.0190 305.10 0.0161 301.90 0.0174 330.52
0.0186 305.15 0.0180 301.91 0.0212 330.57
0.0177 305.10 0.0185 301.92 0.0236 330.55
0.0172 305.14 0.0191 301.92 0.0268 330.53
0.0165 305.19 0.0208 301.90 0.0307 330.50
0.0162 305.22 0.0227 301.84 0.0350 330.42
0.0158 305.15 0.0254 301.65 0.0376 330.33
0.0149 305.41 0.0400 330.17
0.0145 305.44 0.0429 330.01
0.0128 305.41
0.0105 305.35
0.0091 305.09
0.0078 304.90
xc Tc (K) xc Tc (K) xc Tc (K)
0.0162 305.22 0.0185 301.92 0.0236 330.55

of the solutions with air. Using the vacuum line for the sam-
ple preparation and drying the solvents with P2O5 is essential.
Without such precautions reasonable phase diagrams cannot be
obtained in non-polar solvents because the separation temper-
atures are very sensitive to traces of humidity.

The data of the systems cover only the small temperature
range of about 1 K. We have fitted the data assuming the
validity of the rectilinear diameter rule by equation (6) (full
line) or by equation (8) (dashed line), describing the diameter
by the 2β term. The parameters obtained from the fits are
contained in table 3, which lists the critical temperatures Tc

and the critical mole fraction xc together with the coefficient
bx determining the width and the coefficients ax and cx that
describe the asymmetry of the phase diagrams in equations (6)
and (8), respectively. The table gives the parameters for the
systems reported here and others taken from the literature that
will be discussed later on in this paper. The table also gives
the parameters of the corresponding state diagrams Bx Ax and
Cx . The parameters in the rows in which the systems are
labelled by a star are obtained by fitting equation (8) to the
data. Those rows give the parameter cx [K−2/3] and Cx instead
of ax [K−1] and Ax as in all other rows. The root mean square
deviations of the parameters as given by the fits are better than
�Tc = 0.04 K, �xc = 5.4%, �bx = 10% and �ax = 20%,
�cx = 20%.

All systems have an upper critical solution point (UCSP),
where the critical temperatures decrease in the order: decalin,
cyclohexane, methylcyclohexane. The critical mole fractions
are all located at small mole fractions below 0.03. The
critical concentrations estimated from the fits do not differ
systematically from the values obtained experimentally by
applying the equal volume criterion, given in table 2. In an
ideal experiment the maximum of the experimental data, the
critical point determined by the equal volume criterion and the
critical data determined by the fit should be the same, which
is not achieved in the experiment in spite of many efforts.
The figures obtained for Tc, xc and bx are almost invariant
against the choice of the function describing the diameter. In
the corresponding state diagrams the diameter slopes come
out unreasonably large when fitting equation (9) to the data.
Therefore figure 7 shows only the fits with equation (10).

Other choices of the concentration variable rather than
x are useful for further analysis. We analyse the data
with the RPM density ρ∗ as variables for the composition.
For transforming the mol fractions into the RPM densities
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Table 3. Parameters of the phase diagrams of solutions of ionic liquids with the NTF−
2 anion with the mole fraction as a variable of the

composition.

System Tc (K) xc bx (K−1/3) ax (K−1) Bx Ax εc Reference

C18mimNTF2/m-c-hexane 301.92 0.017 0.0100 0.0055 3.88 96.41 2.01
C18mimNTF2/c-hexane 305.33 0.012 0.0082 0.0061 4.52 153.56 2.00
C18mimNTF2/decalin 330.56 0.025 0.0185 0.0036 5.02 47.12 2.13
C18mimNTF2/m-c-hexanea 301.99 0.017 0.0105 0.0048 4.18 12.69 2.01
C18mimNTF2/c-hexanea 305.29 0.012 0.0101 0.0065 5.65 24.40 2.01
C18mimNTF2/decalina 330.55 0.025 0.0188 0.0040 5.26 7.71 2.18
C2mimNTF2/C3OH 294.06 0.137 0.0692 0.0054 3.36 11.55 20.87 [75]
C2mimNTF2/C4OH 320.64 0.146 0.0751 0.0062 3.53 13.66 14.77 [75]
C2mimNTF2/C5OH 339.84 0.162 0.0852 0.0076 3.67 15.95 10.57 [75]
C4mimNTF2/C4OH 300.08 0.139 0.0724 0.0056 3.49 11.99 16.99 [74]
C4mimNTF2/C6OH 333.01 0.202 0.0883 0.0041 3.03 6.78 9.37 [74]
C3mmimNTF2/C4OH 334.18 0.155 0.0724 0.0042 3.23 8.99 13.36 [74]
C3mmimNTF2/C6OH 374.28 0.247 0.0954 0.0023 2.78 3.55 6.87 [74]
C6mimNTF2/C6OH 306.32 0.146 0.0777 0.0062 3.58 12.99 11.45 [101]
C8mimNTF2/benzene 373.21 0.029 0.0093 0.0002 2.31 2.09 2.12 [77]
C10mimNTF2/benzene 318.50 0.019 0.0078 0.0004 2.82 5.98 2.23 [77]
C10mimNTF2/toluene 339.99 0.025 0.0105 0.0008 3.00 11.70 2.26 [77]
C8mimNTF2/α-styrene 429.51 0.052 0.0156 0.0003 2.28 2.39 2.11 [77]
C10mimNTF2/α-styrene 342.82 0.034 0.0124 0.0005 2.56 4.82 2.22 [77]

a The fits are based on equations (8) and (10). The parameters given in the columns, labelled ax and Ax , are the
parameters cx and Cx , respectively, where the dimension of cx is (K−2/3).

Figure 7. Corresponding state phase diagrams of solutions of
C18mimNTF2 in (�) methylcyclohexane, (�) cyclohexane and (♦)
decalin with the mole fraction x as a variable of the composition.

using equation (13) the densities of the salt [96] and of the
solvents [97] are required and a value for the anion–cation
separation σ . Equation (13) implies neglecting the excess
volume, which can be obtained from density measurements of
the solutions. Such measurements, however, are not available
for the systems investigated and are outside the scope of this
work. Excess volumes are expected to be positive [98] but too
small to affect our considerations.

For the anion–cation separation σ we take the value of
5.4 Å, which is the maximum of the radial distribution function
of the geometrical centres of the NTF2 anion and of the
imidazolium ring of the cation obtained in the simulations [91]
of C2mimNTF2. X-ray analysis yielded 5.2 Å [90]. We
take the value of the simulation [91] because it provides also
the data for the C2mimCl and C2mimBF4 that are needed
later on. Table 4 contains the parameters Tc, ρc, bρ , aρ(cρ),
Bρ and Aρ(Cρ) of solutions of ionic liquids with the NTF−

2
anion obtained by fitting the data with the RPM density as a

variable of the composition. The critical temperatures resulting
from the fit are not changed by the choice of the variable;
curves are somewhat more symmetrical. We pause to show
the phase diagrams. The parameters of the fits are discussed
later together with that of other systems.

In order to allow comparison of experimental data with
the simulation results of the model fluids the temperatures are
transformed into the RPM temperature scale, which requires
dielectric permittivities of the solvents as a function of the
temperature [99, 100]. Table 5 gives the parameters to the
corresponding fits of the phase diagrams. For the three systems
the critical temperatures are very similar as are the critical
densities and the parameters of the width. Both the critical
temperatures and the critical densities are smaller than the
RPM values. The width parameters b and B are near the RPM
values. The asymmetry parameters take values of the order of
the RPM figures only with the fit by equations (8) and (10)
describing the diameter by the 2β term.

To visualize the relations between the phase diagrams
of the model systems and the studied solutions we show in
figure 8 the corresponding state diagrams compared to that
of the Lennard-Jones fluid (small dashed line) and the RPM
(long dashed line). It is remarkable that the phase diagrams
reported in this work are wider and more asymmetric than the
phase diagram of the RPM, which certainly is wider and more
asymmetric than the Lennard-Jones fluid.

3.2. Overview on the parameters of the phase diagrams

In order to get a comprehensive overview on the parameters
characterizing the phase diagrams of the liquid–liquid phase
transitions in ionic solutions we compare the data of the
systems reported in this work with that of solutions of other
ionic liquids in polar and non-polar solvents. The discussion is
focused on solutions of ILs with imidazolium cations differing
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Table 4. Parameters of the phase diagrams of solutions of ionic liquids with the NTF−
2 anion with the RPM density as a variable of the

composition.

System Tc (K) ρc bρ (K−1/3) aρ (K−1) Bρ Aρ εc Reference

C18mimNTF2/m-c-hexane 301.92 0.025 0.014 0.0071 3.67 85.42 2.01
C18mimNTF2/c-hexane 305.33 0.020 0.013 0.0091 4.30 137.37 2.01
C18mimNTF2/decalin 330.55 0.028 0.019 0.0032 4.78 37.86 2.18
C18mimNTF2/m-c-hexanea 301.92 0.025 0.014 0.0062 3.92 11.32 2.01
C18mimNTF2/c-hexanea 305.29 0.020 0.016 0.0093 5.26 21.23 2.01
C18mimNTF2/decalina 330.55 0.027 0.019 0.0035 4.93 6.18 2.18
C2mimNTF2/C3OH 294.13 0.248 0.097 0.0029 2.60 3.49 20.86 [75]
C2mimNTF2/C4OH 320.58 0.219 0.096 0.0053 3.01 7.79 14.72 [75]
C2mimNTF2/C5OH 339.84 0.215 0.096 0.0051 3.10 8.03 10.56 [75]
C4mimNTF2/C4OH 300.12 0.210 0.087 0.0026 2.78 3.67 16.99 [74]
C4mimNTF2/C6OH 333.05 0.222 0.080 0.0017 2.51 2.52 9.36 [74]
C3mmimNTF2/C4OH 334.37 0.223 0.081 0.0018 2.52 2.72 13.34 [74]
C3mmimNTF2/C6OH 374.15 0.260 0.083 0.0002 2.30 0.27 6.88 [74]
C6mimNTF2/C6OH 306.37 0.171 0.075 0.0032 2.98 5.67 11.45 [101]
C8mimNTF2/benzene 373.12 0.051 0.016 0.0002 2.19 1.55 2.12 [77]
C10mimNTF2/benzene 318.49 0.036 0.014 0.0006 2.69 4.95 2.23 [77]
C10mimNTF2/toluene 339.98 0.038 0.016 0.0011 2.84 10.12 2.26 [77]
C8mimNTF2/α-styrene 429.34 0.059 0.017 0.0003 2.17 2.04 2.11 [77]
C10mimNTF2/α-styrene 342.81 0.044 0.015 0.0005 2.42 3.94 2.22 [77]

a The fits are based on equations (8) and (10). The parameters given in the columns, labelled aρ and Aρ are the
parameters cρ and Cρ , respectively, where the dimension of cρ is (K−2/3).

Table 5. Parameters of the phase diagrams of solutions of ionic liquids with the NTF−
2 anion represented by the RPM variables.

System T ∗
c ρ∗

c b∗
RPM a∗

RPM B∗
RPM A∗

RPM εc Reference

C18mimNTF2/m-c-hexane 0.020 0.025 0.36 127.45 3.87 100.66 2.01
C18mimNTF2/c-hexane 0.020 0.020 0.35 175.03 4.66 174.44 2.01
C18mimNTF2/decalin 0.024 0.028 0.49 52.71 5.06 44.88 2.18
C18mimNTF2/m-c-hexanea 0.020 0.025 0.38 4.23 4.14 12.63 2.01
C18mimNTF2/c-hexanea 0.020 0.020 0.42 6.72 5.70 24.89 2.01
C18mimNTF2/decalina 0.024 0.027 0.49 2.28 5.22 6.92 2.18
C2mimNTF2/C3OH 0.200 0.248 −1.14 −4.77 −2.69 −3.86 20.86 [75]
C2mimNTF2/C4OH 0.154 0.219 −1.14 −8.76 −2.78 −6.16 14.72 [75]
C2mimNTF2/C5OH 0.117 0.215 −1.19 −9.97 −2.72 −5.44 10.56 [75]
C4mimNTF2/C4OH 0.167 0.210 −1.03 −4.25 −2.70 −3.37 16.99 [74]
C4mimNTF2/C6OH 0.102 0.222 −1.03 −3.58 −2.17 −1.64 9.36 [74]
C3mmimNTF2/C4OH 0.146 0.223 −0.96 −2.98 −2.26 −1.95 13.34 [74]
C3mmimNTF2/C6OH 0.084 0.262 −1.10 −0.20 −1.84 −0.07 6.88 [74]
C6mimNTF2/C6OH 0.115 0.171 −0.95 −6.36 −2.71 −4.27 11.45 [101]
C8mimNTF2/benzene 0.026 0.051 0.43 4.64 2.51 2.37 2.12 [77]
C10mimNTF2/benzene 0.024 0.036 0.38 10.63 2.99 6.80 2.23 [77]
C10mimNTF2/toluene 0.025 0.038 0.43 24.81 3.31 16.23 2.26 [77]
C8mimNTF2/α-styrene 0.030 0.059 0.46 5.43 2.40 2.71 2.11 [77]
C10mimNTF2/α-styrene 0.025 0.044 0.39 8.36 2.58 4.76 2.22 [77]

a The fits are based on equations (8) and (10). The parameters given in the columns, labelled a∗
ρ and A∗

ρ , are the
parameters c∗

ρ and C∗
ρ respectively, which are dimensionless as are all parameters in this table.

in the length of the side chains and the NTF−
2 anion. Solutions

of imidazolium ILs with the anions Cl− [70, 71, 84] and
BF−

4 [69, 83] which were discussed before are included into the
discussion. Parameters of the phase diagrams of ILs with the
NTF−

2 anion are listed in tables 3, 4 and 5 for the different sets
of variables. Tables with the parameters of the phase diagrams
involving ILs with the anions BF−

4 and Cl− are given in the
appendix.

Figures 9(a) and (b) show some examples of the phase
diagrams in non-polar and polar solvents. In figure 9(a), we
see the phase diagrams of the solutions of C18mimNTF2 in
methylcyclohexane, cyclohexane and decalin (♦), of solutions

of C10mimNTF2 and C8mimNTF2 in benzene, and α-styrene
(�) [101]; figure 9(b) concerns solutions of C2mimNTF2 in
propanol, butanol and pentanol (��) [75] and of C3mmimNTF2

in hexanol ( ) [74]. In the C3mmim anion the acidic
proton at the carbon atom between the nitrogen atoms of the
imidazolium ring is substituted by a methyl group, so that
C3mmimNTF2 may be expected to be a less polar isomer of
C4mimNTF2. As generally in this paper the systems are listed
in the order of increasing critical temperatures. The curves
connecting the points of the C18mimNTF2 solutions are fits
using equation (8), while all other curves are described by
equation (6). The critical concentrations of the solutions in
alcohols are near the mole fraction of 0.1, while the critical
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Figure 8. Corresponding state phase diagrams of solutions of
C18mimNTF2 in (�) methylcyclohexane, (�) cyclohexane and (♦)
decalin based on the RPM variables compared to that of the RPM
(long dashed) and the Lennard-Jones fluid (short dashed).

mole fractions are below 0.04. As is well known, the critical
temperatures of the alcohol solutions decrease with increasing
polarity of the solvent [69–75], which is in accordance with
the expectation that the stability of the ionic solution increases
with the polarity of the solvent. A qualitative rationalization
for the critical temperatures of the non-polar solutions is not so
straightforward.

3.2.1. Critical temperatures. We include solutions of ILs
with the anions BF−

4 [69, 74, 83] and Cl− [71, 84] in the
discussion of the parameters of the phase diagrams, which
are given in the tables of the appendix. Figure 10(a) shows
the dependence of the critical temperature Tc on the dielectric
permittivity εc(Tc) of the solvent at the critical temperature
for the solutions CnmimNTF2 salts in non-polar solvents and
alcohols. The figures of the dielectric permittivities of the
solvents are taken from [99, 100].

The data are labelled as follows: (♦) C18mimNTF2 in
methylcyclohexane, cyclohexane and decalin, (�)
C10mimNTF2 in benzene, toluene and α-styrene, C8mimNTF2

in benzene and α-styrene [77], (��) C2mimNTF2 in propanol,
butanol and pentanol [75], (�) C4mimNTF2 in butanol and
hexanol [74], ( ) C3mmimNTF2 in butanol and hexanol [74]
and (�) C6mimNTF2 in hexanol [101]. The systems described
by the same symbol are listed in the order of increasing sepa-
ration temperatures.

In figure 10(a) we can identify two different groups of
data. For the solutions in the alkanes and arenes the critical
temperatures are not correlated with the dielectric permittivity.
The solutions of salts with the anions with longer side chains
are more stable, resulting in a lower critical temperature. For
the solutions in alcohols the critical temperatures decrease with
the dielectric permittivity, which is qualitatively in accordance

a b

Figure 9. Phase diagrams of the solutions of ILs in (a) non-polar aprotic solvents (C18mimNTF2 in methylcyclohexane, cyclohexane and
decalin (♦), of solutions of C10mimNTF2 and C8mimNTF2 in benzene, and of C10mimNTF2 in α-styrene (�) [77]) and (b) alcohols
(C2mimNTF2 in propanol, butanol and pentanol (��) [75] and of C3mmimNTF2 in hexanol ( ) [74]). The systems are listed in the order of
increasing critical temperatures.

a b

Figure 10. Variation of the critical temperature of ionic solutions with the dielectric permittivity of the solvents at the critical temperatures.
(a) Critical temperatures as observed in the Kelvin scale; (b) critical temperatures in the RPM temperature scale. The long dashed line is the
simulation result of the RPM. The short dashed line is the result of FL theory, while the dotted line is 0.05ε. The data are labelled as follows:
(♦) C18mimNTF2 in methylcyclohexane, cyclohexane and decalin, (�) C10mimNTF2 in benzene, toluene and α-styrene, C8mimNTF2 in
benzene and α-styrene [77], (��) C2mimNTF2 in propanol, butanol and pentanol [75], (�) C4mimNTF2 in butanol and hexanol [74],
( ) C3mmimNTF2 in butanol and hexanol [74], (�) C6mimNTF2 in hexanol [101], (�) (C6mimBF4, C4mimBF4) in alcohols (n-propanol,
n-butanol, n-pentanol, n-hexanol, n-octanol, 2-pentanol, 2-butanol, i-butanol, t-butanol) [69, 74] and ( ) C12mimCl in benzene, toluene,
o-xylene, and tetralin and C14mimCl in CCl4 [71].
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Figure 11. RPM critical temperatures T ∗
c of ionic solutions in non-polar solvents as a function of (a) the dielectric permittivity and (b) the

boiling temperatures of the solvents. The systems are labelled as follows: (��) C8mimNTF2 in benzene and α-styrene, (♦) C10mimNTF2 in
benzene, toluene and α-styrene [77], (�) C18mimNTF2 in methylcyclohexane, cyclohexane and decalin, C12mimCl in ( ) benzene, toluene,
o-xylene and tetralin and (�) CCl4.

with the expectation based on the RPM: the stability of ionic
solutions is expected to increase with the dielectric permittivity
of the solvent, thus lowering the critical temperature. Although
the IL C3mmimNTF2 is expected to be less polar than the
isomeric C4mimNTF2 and hence better soluble in alcohols, it
turns out that the solutions of C3mmimNTF2 unmix at higher
temperatures than the isomeric C4mimNTF2, which may result
from an additional, stabilizing contribution due to interactions
of the acidic proton of the imidazolium ion of C4mimNTF2

with the alcohol solvent [74].
In order to compare the behaviour of the real solutions

with that of the RPM, we show in figure 10(b) the critical
temperatures in the RPM scale as a function of the dielectric
permittivity. We have included data of solutions of CnmimBF4

ionic liquids (C6mimBF4, C4mimBF4) in alcohols (n-propanol,
n-butanol, n-pentanol, n-hexanol, n-octanol, 2-pentanol, 2-
butanol, i-butanol, t-butanol) (�) [69, 74] and of C12mimCl
in benzene, toluene, o-xylene and tetralin and C14mimCl in
CCl4 ( ) [71]. The parameters describing the phase diagrams
of ionic liquids with the anions BF−

4 and Cl− are given in
the tables of the appendix. For the transformation of the
data into the RPM variables we take for the BF−

4 salts the
maximum of the pair correlation function at 5.0 Å obtained in
the simulation [91] as the figure for the hard-sphere diameter σ

in the RPM. Other simulations of C4mimBF4 and C2mimBF4

yielded a similar figure of 4.9 Å [102]. If the data would agree
exactly with the RPM, the critical temperatures of all systems
should assume the same value T ∗

c . The long dashed line gives
the result of the simulations using FSS techniques. The short
dashed line is the prediction of the FL mean-field model. In
the scale of this plot the difference between the simulations
and the mean-field model is marginal. The data for the non-
polar solvents collapse into one point in this diagram to a
value somewhat below the RPM value. For the solutions in the
alcohols an almost linear increase of the critical temperatures
T ∗

c with the dielectric permittivity εc is found instead of a
constant value of T ∗

c . The increase of T ∗
c with εc for the

solutions in alcohols is opposite to the trend of Tc in the normal
K temperature scale. The master plot includes the data of the
non-polar solvents and would also include data for solutions in
water, which are outside the range shown here. The correlation
between T ∗

c and ε was reported in earlier work [69–71] for the
anions BF−

4 , PF−
6 and Cl−. Because the RPM is an exact model

only for ε = 1 [103], we draw also a line (dotted line) that
would result if the RPM critical temperature is multiplied by
εc. The observed correlation is between those two lines, which
shows that the linear dependence of T ∗

c on εc is not trivially
caused by the RPM scaling. At present there is no theory
available that can explain the empirical correlation. However,
simulations on mixtures of charged hard spheres and hard-
sphere dipoles state an increase of T ∗

c with ε [104].
Now we have a closer look at the critical temperatures

of the solutions in the non-polar solvents. As can be seen in
figures 10(a) and 11(a), no correlation of Tc or T ∗

c with the
dielectric permittivity εc of the solvent can be found. Figure 11
compares the solutions of C8mimNTF2 in benzene and α-
styrene (��), C10mimNTF2 in benzene, toluene and α-styrene
(♦) [77] and C18mimNTF2 methylcyclohexane, cyclohexane
and decalin (�). We have also included the data for solutions
of C12mimCl in benzene, toluene, o-xylene and tetralin ( )

and CCl4 (�) [71] in figure 11. For the RPM diameter of
C12mimCl the value of the maximum of the anion–cation radial
distribution function of C2mimCl of the simulations [91] is
used, which is 4.6 Å in agreement with neutron scattering
experiments [105] yielding 4.5 Å but above the figure of
another simulation [106] yielding 4.0 Å. In our former analysis
we used an even smaller value of 3.8 Å [69, 71] which was
based on the crystal structure. Again, the solvents to the same
salt are listed in the order of increasing critical temperatures.
Figure 11(a) shows no correlation between T ∗

c and the
dielectric permittivity of the solvent; obviously the dielectric
permittivity is not an appropriate parameter for rationalizing
the differences of the critical temperatures in the solutions
in non-polar solvents. Other properties such as the work
required to separate the solvent molecules to form a solution
may be more relevant. We take the boiling temperatures of the
solvents as a measure of the strength of the solvent–solvent
interactions. Figure 11(b) shows that for the same IL the
figures of T ∗

c increase with the boiling temperatures of the
solvents taken from [107]. Comparing T ∗

c for different ILs
and the same solvent we observe a trend to decrease with the
length of the side chain of the imidazolium anion. Thus the
solvent–solvent interactions modify the transition temperatures
in non-polar solvents, which are certainly determined by
the Coulomb interactions. The critical temperatures T ∗

c
increase with the boiling temperature of the solvents, because
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a b

Figure 12. (a) Critical mole fraction and (b) critical RPM density as a function of the critical temperature. The long dashed line is the result of
the simulations of the RPM, the short dashed line is the result of the Fisher–Levine theory and the dotted line gives the density of the
Lennard-Jones system. The systems are labelled as in figure 10.

the strength of the solvent–solvent interactions reduces the
stability of the mixtures. The longer side chain provides
additional contributions of dispersive interactions with the
solvent that stabilize the solution and hence reduce the
separation temperatures.

3.2.2. Critical densities. Having analysed the critical
temperatures we turn to a discussion of the critical
compositions. The proper choice of the concentration variable
in the analysis of the phase diagrams using the Wegner
expansion or the crossover theory is a topic of long-standing
discussion [53, 92]. We will not go into this matter but
investigate if different choices of the variables may highlight
certain correlations for groups of compounds that are similar
from the physical–chemical point of view. In figures 12(a)
and (b) we compare the critical compositions given as mol
fraction x and as RPM density ρ∗, respectively. The densities
are estimated assuming additive molar volumes. The densities
of the solvents are taken from [97], while the densities of
the NTF2-ILs are taken from [108]. For reference on the
densities of the ILs with the ions BF−

4 and Cl− see [71, 69].
We see two groups of data, one for the solutions in alcohols,
the other for the solutions in non-polar solvents. The critical
compositions of the alcohol solutions are larger than those
of the solutions in hydrocarbons and arenes. For the alcohol
solutions the critical mole fractions (figure 12(a)) show a
trend to increase with separation temperature. The critical
concentration of the solution of C6mimBF4 in water (diamond
in square), however, is in the region of the non-polar solvents,
which is unreasonable. This discrepancy is removed when
using the RPM density as the variable of the composition. With
the RPM density as the concentration variable (figure 12(b))
the critical composition of the solution in water is in the region
of the alcohols, which is reasonable. The critical densities
show no trend. However, the scatter of the data among the
protic solvents is rather large if compared to the representation
in terms of the mole fraction. The figures for the solutions of
the ILs with the NTF2 anion are somewhat above that of the
solutions of ILs with the BF−

4 anion.
An advantage of using the RPM density is that it enables

us to compare with the theoretical and simulation results of
the RPM and of the Lennard-Jones fluid. All critical densities
are smaller than the critical density of the Lennard-Jones fluid

(dotted line). The critical densities of the solutions in protic
solvents are above that of the RPM (long dashed line) and
below that for the solutions in aprotic solvents. Surprisingly,
the RPM densities of the solutions in the aprotic solvents agree
rather well with the result predicted by the FL theory [2, 42]
(short dashed line), which may be fortuitous.

3.2.3. Width of phase diagrams. The next steps in the
discussion concern the shape of the phase diagrams. In
figures 13 we compare the width parameters b of the phase
diagrams and the parameters B of the corresponding states
representations for the various choices of the concentration
variables, namely the molar fraction (figures 13(a) and (b))
and the RPM density ρ∗ (figures 13(c) and (d)). Figures 13(e)
and (f) show the width parameter of the phase diagrams
represented in terms of the RPM variables T ∗ and ρ∗. The
symbols of the data points have the same meaning as in
figures 10 and 12. The width parameters bx, bρ for the
alcohol solutions are larger than that for the solutions in aprotic
solvents. If the mol fraction is chosen as the variable, the width
of the phase diagrams of the solution of C6mimBF4 in water is
in the region of the aprotic solvents, while it is in the region of
the alcohol solutions, when the RPM density is chosen as the
variable of the composition. Thus we conclude again that the
RPM density is a more appropriate variable of the composition
than the mole fraction.

The difference between the solutions in alcohols and
non-polar solvents vanishes in the corresponding state
representations shown in figures 13(b) and (d), indicating a
correlation of the parameters b with the critical compositions.
The widths of the corresponding state diagrams based on the
RPM density in the solutions in protic and aprotic solvents are
very similar, with values near the simulation result of the RPM
(long dashed) and mostly below the figure of the FL theory
(short dashed). The dotted line in figure 13(d) is the width of
the corresponding state phase diagrams of the Lennard-Jones
fluid, which is smaller than that of the ionic solutions.

A substantial difference (figures 13(e) and (f)) between
the width parameters of the phase diagrams of the solutions
in protic and aprotic solvents results if both the density and
the temperature are expressed in the RPM scales. Then, due
to the temperature dependence of the dielectric permittivity
of the solvents, the UCSPs observed for the solutions in the
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a b

dc

e f

Figure 13. Widths of the phase diagrams with (a) the mole fraction and (c) the RPM density as concentration variable; (e) gives the widths
when the phase diagrams are represented in terms of the RPM variables; (b), (d) and (f) give the widths for the corresponding state diagrams.
The systems are labelled as in figure 10, while the lines represent the same calculations as in figure 12.

protic solvents become LCSPs and hence the width parameter
becomes negative. The critical points of the non-polar solvents
remain UCSPs. The absolute values of bRPM of the phase
diagrams in aprotic solvents are smaller than that of the
solutions in protic solvents (figure 13(e)). Within the two
groups of solutions the scatter of the values of the parameter
bRPM is remarkably small. The values of the width parameters
bRPM of the phase diagrams concerning aprotic solvents are
only a little smaller than the RPM value (long dashed line).
The agreement with the values obtained from the FL theory
(short dashed line) and the Lennard-Jones fluid (dotted line) is
even better. The representation of the phase diagrams in terms
of the RPM variables appears to be the best.

In the corresponding state representation (figure 13(f))
based on the RPM variables the absolute values of BRPM

are similar for the groups of the solutions in protic and
aprotic solvents. The figures of the width parameters of ionic
solutions in the aprotic solvents are in the region predicted
by the simulations of the RPM (long dashed line) and the
prediction of the Fisher–Levin mean-field theory (short dashed
line) and above that of the Lennard-Jones fluid. The scatter
of the data points concerning the solutions in the non-polar
solvents is larger if compared to the representation in unscaled

RPM variables. Note that the reduced variables (ρ∗ − ρ∗
c )/ρ∗

c
and (T ∗

c − T ∗)/T ∗
c are invariant against the choice of the

separation σ . If the RPM temperatures would be calculated just
taking the dielectric permittivity of the solvent at the critical
temperature, the corresponding state temperatures calculated
from the conventional Kelvin scale would be identical with that
calculated on the basis of the RPM temperatures.

3.2.4. Asymmetry of the phase diagrams. It remains to
discuss the slopes a and A of the diameter visualized in
figures 14(a)–(f).

The scatter of the data is much larger than for the other
parameters. Comparing the figures for the protic and aprotic
solvents with the molar fraction as variable (figure 14(a))
the asymmetry is seen to be larger for the solutions in
alcohols. Exceptions are the phase diagrams of C18mimNTF2

in cyclohexane, methylcyclohexane and decalin, with a slope
which is in the region found for the alcohol solutions. With
the RPM density as concentration variable (figure 14(c)) the
difference of the asymmetry of the phase diagrams in protic
and aprotic solvents becomes smaller. Using the corresponding
state variables (figures 14(b) and (d)) the difference between
the asymmetry of the phase diagrams between protic and
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Figure 14. Slope of the diameter of the phase diagrams with (a) the mole fraction and (c) the RPM density as concentration variable; (e) gives
the slope of the diameter when the phase diagrams are represented in terms of the RPM variables. The figures (b), (d) and (f) concern the
corresponding state diagrams. The systems are labelled as in figure 10, while the lines are as in figure 12.

aprotic solvents vanishes for both variables. Most data are
between the figure obtained for the RPM and the FL theory
and above that of the Lennard-Jones fluid. The scatter of the
data points is too large to allow further conclusions.

At last we discuss the slope of the diameter for the phase
diagrams using both the RPM variables (figure 14(e)). Because
the UCSP of the phase diagrams of the ionic solutions in
alcohols become LCSP, when using the RPM variables, the
slope parameter of the diameter of the phase diagrams becomes
negative. While the data for the alcohol solutions are fairly
similar for different anions, this is not the case for the data
concerning the solutions in aprotic solvents: for the solutions
of ILs with the NTF2 anion the slope of the diameter is near the
RPM value, while the corresponding values for the solution
of the ILs with the Cl− anion are much larger. This picture
is changed only a little when using the corresponding states
variables (figure 14(f)). The absolute values of the slope of
the diameter of the solutions in protic and aprotic solvents are
rather similar. The asymmetry of the corresponding state phase
diagrams of the solutions of the ILs with the NTF−

2 anion in
aromatic solvents is near that of the RPM. The asymmetry of
the phase diagrams of the solutions of the ILs with the Cl−
anion is even larger than calculated by the FL theory [71, 95].

To close this discussion we show in figure 15 the
corresponding state phase diagrams of the IL solutions in
alcohols (figure 15(a)) and in non-polar solvents (figure 15(b))
based on the RPM variables. The phase diagrams of the
solutions in alcohols have a LCSP and most of them follow
closely a master plot. Noticeable deviations are the solutions of
C3mmimNTF2 in hexanol ( ) with a much smaller asymmetry
and of C6mimBF4 in water, where the asymmetry is larger than
for other solutions. The phase diagrams in non-polar solvents
all have a UCSP. The asymmetry for the Lennard-Jones fluid
is almost not noticeable in the figure. The phase diagrams
of C8mimNTF2 in benzene are less asymmetric than the RPM
(long dashed line), while the asymmetry of the phase diagrams
of the solutions of CnmimCl is bigger. Particularly large is the
asymmetry of the solutions of C18mimNTF2 in hydrocarbons.
According to the numerical analysis of the phase diagrams
given above the differences of the various corresponding state
plots are mainly caused by the diameter, while the width is
rather similar for all systems.

4. General discussion

The aim of this paper is the comparison of the phase diagrams
of real ionic solutions in polar and non-polar solvents with
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Figure 15. Corresponding state phase diagrams of ionic solutions in (a) alcohols and (b) non-polar solvents based on data expressed by the
RPM variables. Labelling of the systems is identical to that of figure 10. The long dashed line is the fit to the simulation results of the RPM,
while the dotted line represents the Lennard-Jones fluid.

model systems of ionic fluids, the primitive model and
the restricted primitive model. It is understood that the
model fluids RPM and PM can only be regarded as cartoons
of the real ionic solutions, describing the Coulomb part
of the interactions. The analysis uses corresponding state
considerations as a tool in the discussion of the phase diagrams,
having in mind that the principle of the corresponding state
with its very strong conditions cannot be expected to apply in
a rigorous manner.

We have reported the first liquid–liquid phase diagrams
of an ionic solution in cyclohexane, which is the prototype
of an inert solvent, and in the cyclic hydrocarbons
methylcyclohexane and decalin. It can be said that parameters
of the phase diagrams reported in this work are in general
agreement with those observed for other ionic solutions in non-
polar solvents.

The data of the model systems and of the real solutions are
both analysed applying simplified scaling laws that presume
Ising criticality and (with the exception of the solutions of
C18mimNTF2 in cyclic hydrocarbons) the heuristic validity of
the rectilinear diameter rule.

The analysis is carried out using the mole fraction and the
RPM density as variables of the composition. The data are also
analysed in terms of the RPM variables.

In the primitive model, which allows different sizes of
the charged hard spheres all properties such as the critical
temperature, the critical density, the width of the phase
diagrams and also the slope of the diameter decrease with
the increasing difference of the size of the ions. Using
corresponding state variables, the relative changes of the
parameters describing the shape of the diagrams are reduced.

We have analysed phase diagrams of solutions of ionic
liquids with imidazolium cations differing in the length of the
side chain, and the anions Cl−, BF−

4 and NTF−
2 that differ in

size. The anions Cl− and BF−
4 can be reasonably well regarded

as spherical, which is not so for the NTF−
2 ion, which has a

complicated shape and forms two conformers. The solvents
were hydrocarbons, arenes and alcohols. For the analysis in
terms of the RPM variables it is assumed that the charge of the
imidazolium cation is centred at the imidazolium ring so that
the cations of the considered ILs are regarded as equal-sized

although the size of the cations varies substantially with the
length of the side chain. The maximum of the anion–cation pair
correlation function, which concerns the mass centres of the
imidazolium ring and of the anion obtained by simulations, is
taken as the distance of the charges at contact of the ions when
expressing the phase diagrams in terms of the RPM variables.
In former work rather ad hoc estimates of the charge separation
at contact based on simple estimates using van der Waals radii
and bond lengths were used, which were not appropriate for
dealing with the NTF2 anion. The choice of the maxima of
the cation–anion pair distribution function as the diameter σ

in the RPM allowed a consistent representation of the phase
diagrams of the solutions of ILs with the anions Cl−, BF−

4
and NTF−

2 . The data of the ILs with different anions show the
same behaviour if they are represented in RPM variables. The
observation that the parameters of the phase diagrams do not
depend on the lengths of the side chains corroborates the model
that the liquid–liquid phase transition is mainly determined by
the Coulomb part of the ILs.

The variation of the relative size of the anions and
of the cations is too small to show the variation of the
properties obtained in the simulations of the primitive model.
The influence of the solvent, which has not yet been
treated adequately, seems to be more important. The
critical density and the critical temperature as well as the
parameters of the width and the slope of the diameter
allow a clear distinction between the solutions in alcohols
including water and the solutions in non-polar solvents. While
in the non-polar solvents the critical temperatures do not
depend on the dielectric permittivity of the solvent, they
are reduced in alcohols with increasing dielectric permittivity
of the solvents. In the RPM temperature scale the critical
temperatures are located on a master plot, which shows an
essentially linear increase with the dielectric permittivity of the
solvents including hydrocarbons and water. While the critical
temperatures of the ionic solutions in polar solvents are larger
than the RPM value, they are smaller for solutions in non-polar
solvents and are located at the same position in the scale of this
plot. A finer analysis shows a correlation of the RPM critical
temperatures of the ionic solutions in non-polar solvents
with the boiling temperatures of the solvents. The critical
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temperatures T ∗
c increase with the boiling temperature of the

solvents, as the strength of the solvent–solvent interactions
reduces the stability of the mixtures. The longer side chain
provides additional contributions of dispersive interactions
with the solvent, which stabilize the solution and hence
reduce the separation temperatures. Thus the solvent–solvent
interactions modify the transition temperatures in non-polar
solvents, which are certainly determined by the Coulomb
interactions.

The critical compositions are different for the solutions
in alcohols and non-polar solvents but do not vary with the
dielectric permittivity of the solvents. The critical densities
of the solutions in alcohols are above the RPM value and
below that figure in non-polar solvents. With the mole fraction
as variable the critical compositions of the ionic solutions in
water are in the region of the solutions in the aprotic solvents,
while the analyses based on the RPM density locates the
critical densities of the water solutions among the alcohols,
which appears more reasonable. Furthermore, the critical
mol fractions increase with the critical temperatures of the
solutions, while the data based on analyses in terms of the
RPM density show no systematic change. In other words: the
number density of the ions determines the critical composition.

The analysis of the shape of phase diagrams leads to
similar conclusions. Both the width and the asymmetry of the
phase diagrams of the solutions in the protic solvents are larger
than in the aprotic solvents. Again, the data of the width of the
solutions in water are in the region of the non-polar solvents
if the mol fraction is the variable of the composition, but agree
with the data found for the alcohol solutions if the RPM density
is chosen. In the corresponding state diagrams the difference
between the width parameters of the phase diagrams in protic
and aprotic solvents vanishes. This is also true for the slope
of the diameter which determines the asymmetry of the phase
diagrams. While the width is rather similar for all systems, the
scatter of the values obtained for the diameter is larger: the
differences between the corresponding state plots are mainly
caused by the diameter.

The analyses based on the phase diagrams represented
in terms of the RPM variables leads to a remarkable result.
In this representation all phase diagrams of the solutions in
alcohols and water get an LCSP. The parameters of the phase
diagrams with the solutions in protic and aprotic solvents are
distinguished by the sign and show now further systematic
changes. Thus, the analysis in terms of the RPM variables
allows a clear distinction between the ionic solutions in protic
and aprotic solvents.

In the data analysis we have mostly applied the simplified
scaling relations equations (4) and (5). It is now known that
the rectilinear linear diameter rule is incorrect: non-analytic
contributions determine the diameter when approaching the
critical temperature [54–57]. Fits assuming the rectilinear
diameter lead to different slopes of the diameter, when
changing the temperature range included into the fit. In
fact, the phase diagrams of the solutions of C18mimNTF2 in
cyclohexane, methylcyclohexane and tetralin were measured
only in a small temperature range of about 1 K. Presuming
the applicability of the rectilinear diameter rule led to a slope

of the diameter which appeared unrealistically large so that
we assumed that in those cases the 2β term of the expansion
equation (3) may determine the asymmetry.

In part the scatter of the slope of the diameter in the two
solvent groups, which is larger than for the other parameters,
may be due to the simplifying assumption of the rectilinear
diameter. A further reason may be that the coefficients
determining the temperature dependence of the diameter are
differences of combinations of higher terms in the Landau–
Ginzburg expansion and hence may be particularly sensitive
to details of the intermolecular potentials [71, 95]. It is quite
likely that data of higher accuracy that allow using the accurate
scaling relations may allow identifying subtle correlations.
Unfortunately, the accuracy of the data and the number of data
points available for this analysis did not allow an analysis in
accordance with the modern developments of the theory of
critical phenomena such as the crossover theory [45] and the
complete scaling [54–57]. Work on very few systems that
hopefully have the required accuracy is carried out at present.

Most liquid–liquid phase transitions in ionic solutions are
in accordance with the results of the analysis given in this
paper. However, there are reports of experiments that may
challenge the generality of our considerations. LCSPs have
been observed repeatedly in ionic solutions [21, 80, 81, 88].
It was demonstrated in former work [71] that phase diagrams
in aprotic solvents including the KI/SO2-system and solutions
of the salt trimethyl-ethylammonium iodide (N1112I) [21] in
chloroform that have an LCSP get a UCSP when using the
RPM variables and taking the temperature dependence of
the dielectric permittivity of the solvent into account so that
agreement with the behaviour expected for ionic solution in
aprotic solvents can nevertheless be stated. Closed solubility
loops and LCSPs that are observed in ionic solutions in water
have been explained as a consequence of the breaking of the
hydrogen bond network with increasing temperature [58, 109].
Such explanations, however, are not appropriate if considering
the LCSPs reported for ionic solutions in arenes [77, 87].
Specific interactions between the arenes and the ions leading
to clathrate-like structures [110] may be important in such
cases. Alternatively, it may well be that the RPM or simple
ionic solutions when investigated at lower temperatures than
considered until now in theory and simulations may lead to
closed loop phase diagrams. One could speculate that at low
temperatures non-polar associates such as quadrupoles may be
solved better than the ion pairs and free ions, and aggregation
of the ions may break with rising temperature.

In conclusion we state the need of theoretical and
simulation work on the phase transitions of ionic solutions that
may provide the explanations of the correlations found in the
empirical analysis reported in this paper.
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Appendix

Table A.1. Parameters of the phase diagrams of imidazolium ionic liquids with the BF−
4 and the Cl− anion represented with the mole fraction

as a variable of the composition.

System Tc (K) xc bx (K−1/3) ax (K−1) Bx Ax εc Reference

C6mimBF4/H2O 330.98 0.041 0.027 0.0054 4.67 29.58 67.40 [69]
C6mimBF4/C3OH 287.71 0.102 0.067 0.0098 4.37 27.76 21.75 [69]
C6mimBF4/C4OH 303.73 0.122 0.074 0.0079 4.08 19.59 16.56 [69]
C6mimBF4/C5OH 315.24 0.138 0.085 0.0076 4.17 17.30 12.63 [69]
C6mimBF4/C6OH 326.41 0.149 0.090 0.0083 4.14 18.22 9.84 [69]
C6mimBF4/2-C5OH 317.67 0.125 0.078 0.0075 4.25 19.13 10.20 [69]
C6mimBF4/2-C4OH 303.40 0.110 0.072 0.0069 4.39 19.10 16.60 [69]
C4mimBF4/C3OH 317.34 0.121 0.072 0.0082 4.04 21.35 17.88 [74]

C4mimBF4/i-C3OH 320.63 0.125 0.068 0.0052 3.69 13.23 16.10 [74]
C4mimBF4/C4OH 336.89 0.148 0.084 0.0083 3.96 18.83 13.10 [74]
C4mimBF4/2-C4OH 337.14 0.126 0.066 0.0051 3.66 13.69 13.09 [74]
C4mimBF4/i-C4OH 337.23 0.144 0.076 0.0054 3.65 12.65 12.72 [74]
C4mimBF4/t-C4OH 333.60 0.100 0.051 0.0041 3.57 13.62 8.24 [74]
C4mimBF4/C6OH 367.97 0.197 0.096 0.0063 3.51 11.75 7.21 [74]
C6mimBF4/C4OH 308.58 0.111 0.068 0.0078 4.12 21.61 16.01 [74]
C6mimBF4/C6OH 331.23 0.156 0.082 0.0052 3.64 11.05 9.49 [74]

C6mimBF4/C8OH 346.52 0.171 0.091 0.0066 3.73 13.38 7.18 [74]
C12mimCl/benz 297.45 0.032 0.0175 0.0013 3.65 12.27 2.27 [71]
C12mimCl/tol 337.76 0.032 0.0172 0.0012 3.73 13.04 2.27 [71]
C12mimCl/o-xyl 364.25 0.042 0.0167 0.0011 2.88 9.63 2.34 [71]
C12mimCl/tetra 388.02 0.071 0.0292 0.0014 3.02 7.84 2.48 [71]
C14mimCl/CCl4 315.40 0.025 0.0143 0.0013 3.88 16.22 2.19 [71]

Table A.2. Parameters of the phase diagrams of imidazolium ionic liquids with the BF−
4 and the Cl− anion represented with the RPM density

as a variable of the composition.

System Tc (K) ρc bρ (K−1/3) aρ (K−1) Bρ Aρ εc Reference

C6mimBF4/H2O 331.28 0.232 0.096 0.0056 2.87 7.99 67.30 [69]
C6mimBF4/C3OH 287.71 0.168 0.094 0.0074 3.68 12.59 21.75 [69]

C6mimBF4/C4OH 303.73 0.167 0.088 0.0050 3.55 9.18 16.56 [69]
C6mimBF4/C5OH 315.23 0.162 0.089 0.0044 3.72 8.53 12.63 [69]

C6mimBF4/C6OH 326.41 0.156 0.085 0.0050 3.77 10.59 9.84 [69]
C6mimBF4/2-C5OH 317.66 0.146 0.083 0.0051 3.85 11.07 10.20 [69]

C6mimBF4/2-C4OH 303.39 0.151 0.088 0.0046 3.90 9.22 16.60 [69]
C4mimBF4/C3OH 317.41 0.193 0.098 0.0075 3.47 12.29 17.87 [74]

C4mimBF4/i-C3OH 320.66 0.196 0.092 0.0041 3.21 6.73 16.10 [74]
C4mimBF4/C4OH 337.02 0.191 0.096 0.0069 3.50 12.23 13.09 [74]

C4mimBF4/2-C4OH 337.30 0.171 0.080 0.0043 3.25 8.50 13.06 [74]
C4mimBF4/i-C4OH 337.30 0.192 0.089 0.0042 3.23 7.32 12.71 [74]

C4mimBF4/t-C4OH 333.70 0.135 0.064 0.0041 3.28 10.04 8.23 [74]
C4mimBF4/C6OH 368.03 0.197 0.090 0.0047 3.26 8.69 7.20 [74]

C6mimBF4/C4OH 308.65 0.151 0.080 0.0061 3.58 12.57 16.00 [74]

C6mimBF4/C6OH 331.22 0.160 0.077 0.0032 3.31 6.61 9.49 [74]
C6mimBF4/C8OH 346.54 0.143 0.072 0.0044 3.53 10.61 7.18 [74]

C12mimCl/benzene 297.45 0.039 0.020 0.0012 3.43 9.21 2.28 [71]
C12mimCl/toluene 337.76 0.032 0.016 0.0010 3.57 10.58 2.25 [71]

C12mimCl/o-xylene 364.24 0.035 0.014 0.0008 2.73 8.09 2.34 [71]
C12mimCl/tetralin 388.00 0.046 0.018 0.0008 2.86 6.42 2.48 [71]

C14mimCl/CCl4 315.40 0.025 0.014 0.0011 3.72 13.57 2.19 [71]

19



J. Phys.: Condens. Matter 21 (2009) 424119 W Schröer and V R Vale

Table A.3. Parameters of the phase diagrams of imidazolium ionic liquids with the BF−
4 and the Cl− anion represented in the variables of the

RPM.

System Tc ρc bRPM aRPM BRPM ARPM εc Reference

C6mimBF4/H2O 0.6751 0.232 −0.96 −5.36 −3.61 −15.59 67.30 [69]
C6mimBF4/C3OH 0.1894 0.168 −1.13 −12.92 −3.87 −14.54 21.75 [69]
C6mimBF4/C4OH 0.1523 0.167 −1.07 −8.98 −3.41 −8.20 16.56 [69]
C6mimBF4/C5OH 0.1206 0.162 −1.12 −8.87 −3.42 −6.59 12.63 [69]
C6mimBF4/C6OH 0.0973 0.156 −1.13 −11.54 −3.32 −7.21 9.84 [69]
C6mimBF4/2C5OH 0.0981 0.147 −0.93 −6.52 −2.91 −4.34 10.20 [69]
C6mimBF4/2C4OH 0.1525 0.151 −1.06 −8.14 −3.76 −8.25 16.60 [69]
C4mimBF4/C3OH 0.1718 0.194 −1.16 −12.18 −3.33 −10.80 17.87 [74]
C4mimBF4/i-C3OH 0.1563 0.196 −1.03 −5.69 −2.81 −4.53 16.10 [74]
C4mimBF4/C4OH 0.1336 0.191 −1.16 −12.28 −3.12 −8.61 13.09 [74]
C4mimBF4/2-C4OH 0.1334 0.171 −0.97 −7.64 −2.89 −5.97 13.06 [74]
C4mimBF4/i-C4OH 0.1298 0.192 −1.04 −6.65 −2.75 −4.52 12.71 [74]
C4mimBF4/t-C4OH 0.0831 0.134 −0.72 −5.87 −2.33 −3.64 8.23 [74]
C4mimBF4/C6OH 0.0803 0.196 −1.22 −11.93 −2.68 −4.88 7.20 [74]
C6mimBF4/C4OH 0.1495 0.151 −0.97 −10.91 −3.41 −10.84 16.00 [74]
C6mimBF4/C6OH 0.0952 0.161 −1.01 −7.19 −2.87 −4.26 9.49 [74]
C6mimBF4/C8OH 0.0753 0.143 −1.08 −14.72 −3.18 −7.73 7.18 [74]
C12mimCl/benzene 0.0189 0.039 0.55 25.41 3.79 12.42 2.27 [71]
C12mimCl/toluene 0.0212 0.032 0.48 24.97 4.18 16.75 2.25 [71]
C12mimCl/o-xylene 0.0237 0.036 0.42 22.05 3.39 14.72 2.34 [71]
C12mimCl/tetraline 0.0268 0.046 0.53 19.51 3.46 11.32 2.48 [71]
C14mimCl/CCl4 0.0193 0.025 0.39 25.08 4.16 19.11 2.19 [71]
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[12] Schröer W, Wagner M and Stanga O 2006 J. Mol. Liq. 127 2
[13] Wiegand S, Berg R F and Levelt Sengers J M H 1998 J. Chem.

Phys. 109 4533
[14] Kleemeier M, Wiegand S, Derr T, Weiss V, Schröer W and
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Bunsenges. Phys. Chem. 97 975
[21] Wiegand S, Kleemeier M, Schröder J M, Schröer W and
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[87] Dittmar H R and Schröer W H 2009 J. Phys. Chem. B

113 1249
[88] Walden P and Centnerszwer M 1903 Z. Phys. Chem. 42 432
[89] Holbrey J D, Reichert W M and Rogers R D 2004 Dalton

Trans. 2267
[90] Deetlefs M, Hardacre C, Nieuwenhuyzen M, Padua A A H,

Sheppard O and Soper A K 2006 J. Phys. Chem. B
110 12055

[91] Qiao B, Krekeler C, Berger R, Site L D and Holm C 2008
J. Phys. Chem. B 112 1743

[92] Japas M L and Levelt Sengers J M H 1990 J. Phys. Chem.
94 5361

[93] Kulinskii V L and Malomuzh N P 2009 Physica A 388 621
[94] Kim Y C 2005 Phys. Rev. E 71 051501
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